Modeling of the primary and secondary drying stages of the freeze drying of pharmaceutical products in vials: Numerical results obtained from the solution of a dynamic and spatially multi-dimensional lyophilization model for different operational policies

Author(s):  
P. Sheehan ◽  
A. I. Liapis
2020 ◽  
pp. 1-15 ◽  
Author(s):  
Getachew Assegehegn ◽  
Edmundo Brito-de la Fuente ◽  
José M. Franco ◽  
Críspulo Gallegos

2011 ◽  
Vol 100 (2) ◽  
pp. 732-742 ◽  
Author(s):  
Davide Fissore ◽  
Roberto Pisano ◽  
Antonello A. Barresi

Author(s):  
ILYA GULYAKIN ◽  
ANNA LANTSOVA ◽  
LYUDMILA NIKOLAEVA ◽  
MARIA DMITRIEVA ◽  
NATALIYA OBOROTOVA ◽  
...  

Objective: Development of a lyophilized injectable dosage form LCS-1208, an original antitumor drug based on an indolocarbazole derivative. Methods: The prepared solution of the injectable dosage form LCS-1208 is transferred to sterilizing filtration, which is carried out under vacuum on a «Stericup» filter unit with a filter pore size of 0.22 μm. The sterile solution of the injectable dosage form LCS-1208 is poured into sterile vials using a dispenser and lyophilized in a freeze-drying chamber. At the end of drying, the preparation is corked in the chamber of a sublimation unit using a hydraulic device and transferred to crimping with aluminum caps using a seaming machine. Quantitative determination of the drug content was determined by spectrophotometry using a standard sample at λ = 320±2 nm. The pH was determined by potentiometry. Results: A freeze-drying regimen for the injectable dosage form LCS-1208 has been developed. The required solution freezing temperature was established taking into account the presence of 2 eutectic zones: a solution of LCS-1208 in DMSO (-35 ÷-32) °С, an aqueous solution of Kollidon 17PF (-10 ÷-8) °С. As a result of a series of experiments, the optimal lyophilization regime was chosen that does not require preliminary freezing in a low-temperature chamber, with freezing on the shelves of freeze-drying at a temperature of-47 °C without their preliminary cooling. The most acceptable vial filling volume was determined, amounting to 3 ml, and the rate of temperature rise during secondary drying of the preparation was justified. When using the developed regime of lyophilization of the LCS-1208 solution, it was shown that it can be sublimated while preserving the initial qualitative and quantitative characteristics. Conclusion: In this article, using the example of creating a lyophilized injectable dosage form LCS-1208 (the original antitumor drug from the indolocarbazole group), the main problems that arose during the lyophilization of the selected composition of the model solution, as well as ways to improve the process.


2004 ◽  
Vol 58 (12) ◽  
pp. 552-562 ◽  
Author(s):  
Dejan Przic ◽  
Nenad Ruzic ◽  
Slobodan Petrovic

This article presents a general overview of lyophilization and discusses the underlying principles of the process through the basics of: formulation, freezing, primary drying and secondary drying. In this article lyophilization is defined as a stabilizing process in which the substance is first frozen and then the quantity of the solvent is reduced first by sublimation (primary drying) and then by desorption (secondary drying) to values that will no longer support biological growth or chemical reactions. Special mention was made of the industrial use of the process and emphasis was placed on the lyophilization of pharmaceutical products and food industry products. Lyophilization equipment, as well as the formulation of materials that can be lyophilized, are described in sufficient detail to give information on the restrictions and advantages of lyophlization. Processing economics and comparison with conventional drying methods are presented. A historical overview of the process and future developments presented from the industrial viewpoint give an insight on the previous application of lyophilization and the prospects of its broad industrial use.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1488 ◽  
Author(s):  
Dorota Nowak ◽  
Ewa Jakubczyk

Freeze-drying, also known as lyophilization, is a process in which water in the form of ice under low pressure is removed from a material by sublimation. This process has found many applications for the production of high quality food and pharmaceuticals. The main steps of the freeze-drying process, such as the freezing of the product and primary and secondary drying, are described in this paper. The problems and mechanisms of each step of the freeze-drying process are also analyzed. The methods necessary for the selection of the primary and secondary end processes are characterized. The review contains a description of the effects of process conditions and the selected physical properties of freeze-dried materials, such as structural properties (shrinkage and density porosity), color, and texture. The study shows that little attention is given to the mechanical properties and texture of freeze-dried materials obtained from different conditions of the lyophilization process.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 433 ◽  
Author(s):  
Tarun Ojha ◽  
Vertika Pathak ◽  
Natascha Drude ◽  
Marek Weiler ◽  
Dirk Rommel ◽  
...  

Poly(n-butyl cyanoacrylate) microbubbles (PBCA-MB) are extensively employed for functional and molecular ultrasound (US) imaging, as well as for US-mediated drug delivery. To facilitate the use of PBCA-MB as a commercial platform for biomedical applications, it is important to systematically study and improve their stability and shelf-life. In this context, lyophilization (freeze drying) is widely used to increase shelf-life and promote product development. Here, we set out to analyze the stability of standard and rhodamine-B loaded PBCA-MB at three different temperatures (4 °C, 25 °C, and 37 °C), for a period of time of up to 20 weeks. In addition, using sucrose, glucose, polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) as cryoprotectants, we investigated if PBCA-MB can be lyophilized without affecting their size, concentration, US signal generation properties, and dye retention. Stability assessment showed that PBCA-MB remain largely intact for three and four weeks at 4 °C and 25 °C, respectively, while they disintegrate within one to two weeks at 37 °C, thereby compromising their acoustic properties. Lyophilization analyses demonstrated that PBCA-MB can be efficiently freeze-dried with 5% sucrose and 5% PVP, without changing their size, concentration, and US signal generation properties. Experiments involving rhodamine-B loaded MB indicated that significant dye leakage from the polymeric shell takes place within two to four weeks in case of non-lyophilized PBCA-MB. Lyophilization of rhodamine-loaded PBCA-MB with sucrose and PVP showed that the presence of the dye does not affect the efficiency of freeze-drying, and that the dye is efficiently retained upon MB lyophilization. These findings contribute to the development of PBCA-MB as pharmaceutical products for preclinical and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document